(Corrections are listed in page number order)

- **[p33]** Equation in the fourth line of footnote 7 in Chapter 2 (p.33) should be:

\[p' D^L / L^L < p' D^L / L^L \] instead of \[p' D^L / L^L < p' D^L / L^L \]

- **[p129]** The second line of the third paragraph under section “Gains from Product Variety in Trade” (p.129) should be:

“we can obtain an estimate…” instead of “we can obtain as estimate…”

- **[p159]** The second integral in equation (6.6) in Chapter 6 (p.159) should be:

\[
\int_{\phi_a}^{\infty} (B_d \phi^{\sigma-1} - f_d) g(\phi) d\phi
\] instead of \[
\int_{\phi_a}^{\infty} (B_d \phi^{\sigma-1} - f_d) g(\phi) d\phi
\]

- **[p161]** Equation in the second line of the fourth paragraph under section “Trade Equilibrium” (p.161) should be:

\[P_s(\phi) = \left[\sigma / (\sigma - 1) \right] \left[\tau / \phi \right] \] instead of \[P_s(\phi) = \left[\sigma / (\sigma - 1) \right] \left[\tau / \phi \right] \]

- **[p164]** The first integral inside the square bracket of equation (6.17) in Chapter 6 (p.164) should be:

\[
M_d \int_{\phi_d}^{\infty} p_d(\phi)^{1-\sigma} \frac{g(\phi)}{[1 - G(\phi_d)]} d\phi
\] instead of \[
M_d \int_{\phi_d}^{\infty} p(\phi)^{1-\sigma} \frac{g(\phi)}{[1 - G(\phi_d)]} d\phi
\]

- **[p184]** The second term in the first long equation under question 6.4 in Chapter 6 (p.184) should be:

\[
M_d \int_{\phi_d}^{\infty} \left[\frac{y_d(\phi)}{\phi} + f_d \right] \frac{g(\phi)}{[1 - G(\phi_d)]} d\phi
\] instead of \[
M_d \int_{\phi_d}^{\infty} \left[\frac{y(\phi)}{\phi} + f_d \right] \frac{g(\phi)}{[1 - G(\phi_d)]} d\phi
\]

The second long equation under the same question should be:
$$L = (M_c f_e + M_d f_d + M_x f_x) + \left(\frac{\sigma - 1}{\sigma}\right) \left[M_d \int_{\varphi_d}^{\infty} \frac{p(\varphi) y_d(\varphi) g(\varphi)}{[1 - G(\varphi_d)]} d\varphi + M_x \int_{\varphi_x}^{\infty} \frac{p(\varphi) y_x(\varphi) g(\varphi)}{[1 - G(\varphi_x)]} d\varphi \right]$$

$$= (M_c f_e + M_d f_d + M_x f_x) + \left(\frac{\sigma - 1}{\sigma}\right) L$$

Instead of

$$L = (M_c f_e + M f + M_x f_x) + \left(\frac{\sigma - 1}{\sigma}\right) \left[M_d \int_{\varphi_d}^{\infty} \frac{p(\varphi) y(\varphi) g(\varphi)}{[1 - G(\varphi_d)]} d\varphi + M_x \int_{\varphi_x}^{\infty} \frac{p(\varphi) y_x(\varphi) g(\varphi)}{[1 - G(\varphi_x)]} d\varphi \right]$$

$$= (M_c f_e + M f + M_x f_x) + \left(\frac{\sigma - 1}{\sigma}\right) L$$

- **[p190]** The very last inequality displayed in the un-numbered equation which is eight lines from the bottom in **p.190** should be:

 $$p^a c^{ha} \leq w^a v^{ha} \quad \text{instead of} \quad p^c c^{ha} \leq w^c v^{ha}$$

- **[p191]** The large equation on the page (**p.191**) should be numbered as (7.4). The expression in the third line of this large equation should be:

 $$(p^a' y^a - w^a' v^a) - (p' y^a - w' v^a) \quad \text{instead of} \quad (p^a' y^a - w^a' v^h) - (p' y^a - w' v^a)$$

- **[p193]** Reference appearing in the first line under section “COMMODITY TAXES AND SUBSIDIES” (**p.193**) should be **Dixit and Norman (1986)** (instead of Dixit (1986)), and the corresponding reference (**p. 441**) should be:

- **[p197]** The fifth line of the second paragraph under section “PARTIAL REFORM OF TARIFFS” (**p.197**) should be: $$t_i < 0$$ instead of $$t_i > 0$$.

- **[p241]** Equation (8.35b) in Chapter 8 (**p. 241**) should be:

 $$U = \left[\int_0^{\infty} X_n^{(\varepsilon - 1)/\omega} d\eta \right]^{\varepsilon/(\varepsilon - 1)}$$

 instead of

 $$U = \left[\int_0^{\infty} X_n^{(\varepsilon - 1)/\omega} d\eta \right]^{\varepsilon/(\varepsilon - 1)}$$
• **[p267]** Equation (9.12) in Chapter 9 (p.267) should be:

\[p_i = \mu_i [g_i(z_i) + T_i], i = 1, ..., M \quad \text{instead of} \quad p_i = \mu_i g_i(z_i), i = 1, ..., M \]

• **[p334]** The very last term in equation (11.5) in Chapter 11 (p.334) should be \(\mu_i \hat{K}_i \) instead of \(\mu_i K_i \).

• **[p340]** Equation (11.17) in Chapter 11 (p.340) should be:

\[y = N^{\sigma/(\sigma-1)} x = N^{1/(\sigma-1)} X \quad \text{instead of} \quad y = N^{\sigma/(\sigma-1)} x = N^{1/(1-\sigma)} X \]